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Abstract

This study investigates the numerical solution of viscoelastic flows using two contrasting high-order finite volume
schemes. We extend our earlier work for Poiseuille flow in a planar channel and the single equation form of the extended
pom–pom (SXPP) model [M. Aboubacar, J.P. Aguayo, P.M. Phillips, T.N. Phillips, H.R. Tamaddon-Jahromi, B.A. Sni-
gerev, M.F. Webster, Modelling pom–pom type models with high-order finite volume schemes, J. Non-Newtonian Fluid
Mech. 126 (2005) 207–220], to determine steady-state solutions for planar 4:1 sharp contraction flows. The numerical tech-
niques employed are time-stepping algorithms: one of hybrid finite element/volume type, the other of pure finite volume
form. The pure finite volume scheme is a staggered-grid cell-centred scheme based on area-weighting and a semi-Lagrang-
ian formulation. This may be implemented on structured or unstructured rectangular grids, utilising backtracking along
the solution characteristics in time. For the hybrid scheme, we solve the momentum-continuity equations by a frac-
tional-staged Taylor–Galerkin pressure-correction procedure and invoke a cell-vertex finite volume scheme for the consti-
tutive law. A comparison of the two finite volume approaches is presented, concentrating upon the new features posed by
the pom–pom class of models in this context of non-smooth flows. Here, the dominant feature of larger shear and exten-
sion in the entry zone influences both stress and stretch, so that larger stretch develops around the re-entrant corner zone as
Weissenberg number increases, whilst correspondingly stress levels decline.
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1. Introduction

This paper is concerned with the prediction of the flow of branched polymer melts through a 4:1 planar
contraction using the extended pom–pom (XPP) model of Verbeeten et al. [36]. There have been a number
of extensions to the tube kinetic model for entangled melts developed by Doi and Edwards [16], including
the Double Convected Reptation (DCR) model of Ianniruberto and Marrucci [24], the pom–pom model of
McLeish and Larson [25], as well as versions of the extended pom–pom model [36]. These models possess
two features that are absent from phenomenological models such as the Oldroyd-B model. The first feature
recognises the dependency of melt rheology on the molecular structure of the polymer, whilst the second rec-
ognises that the spectrum of relaxation times leads to partial differential equations for the orientation and
stretch.

The original pom–pom model of McLeish and Larson [25] is based on an idealised polymer molecule in
which the polymer chains are represented by a backbone segment connecting two identical pom–poms each
with q arms at the branch points. The drag that the melt exerts on these arms causes the backbone to stretch.
The branch points slow down the reptation motion of the backbone by pinning the molecule in place at the
tube junctions. The free ends of the arms are still able to move, however, and the polymer is able to free itself
from the tube by a process known as arm-retraction, which is triggered when the molecule reaches its maxi-
mum stretched state. The arms gradually work their way out of the tubes towards the branch points by dif-
fusion. Once the arms have relaxed, the backbone can subsequently relax by moving the branch points. The
finite extensibility constraint on the backbone stretch gives rise to discontinuity in the gradient of the steady-
state extensional viscosity.

Blackwell et al. [10] modified the evolution equation for the stretch to allow for branch point displacement.
This had the effect of removing the discontinuity in steady-state extensional viscosity gradient. The two
remaining major drawbacks in the original pom–pom model, viz. the prediction of a zero second normal
stress-difference and the unboundedness of the backbone orientation equation, were addressed in the extended
pom–pom (XPP) model developed by Verbeeten et al. [36].

In this paper numerical solutions are generated using two contrasting finite volume schemes: a hybrid cell-
vertex scheme (FE/FV) and a pure cell-centred (SLFV) scheme. The schemes are described in the papers of
Aboubacar and Webster [5] and Phillips and Williams [29], respectively. They are used to generate steady-state
profiles for velocity, stretch and extra-stress in plane Poiseuille flow in [1]. These steady-state profiles are used
as inflow conditions in the present work.

The planar 4:1 contraction problem has been at the forefront of computational rheology since it was
adopted as a benchmark problem at the 5th international workshop on numerical methods in non-Newtonian
flows [20]. It is now appreciated that the choice of 4:1 contraction ratio is limiting with respect to stimulation
of a rich variety of interesting flow phenomena. An important exception to the lure of the 4:1 configuration is
the recent paper of Alves et al. [7] who investigated the effect of varying contraction ratio on creeping flow
characteristics in a planar contraction for a linear Phan-Thien/Tanner (PTT) fluid (� = 0.25), capable of mod-
erate strain-hardening. Nevertheless, due to the extensive literature on the 4:1 contraction problem it remains
an important benchmark problem on which to test the accuracy and stability of numerical schemes. A com-
prehensive account of experimental observations [17,18] and numerical predictions is given in the research
monograph of Owens and Phillips [27] and the review paper of Walters and Webster [39]. We close with some
introductory remarks, reporting on some of the contributions that have been made to the understanding of
this subject.

Boger [11] and Evans and Walters [17,18] have shown that, under the assumption of creeping flow, different
types of vortices are formed upstream of the contraction plane. The vortices tend to increase with elasticity for
shear-thinning fluids. The numerical simulations of Alves et al. [7] agree with the visualisations of Evans and
Walters [17] for the 1% aqueous solution of polyacrylamide in that a lip-vortex is neither predicted nor
observed. Purnode and Crochet [32] attempted to predict the experimental results of Evans and Walters
[17,18] using a single-mode Peterlin modification of the finite extension nonlinear elasticity (FENE-P) model.
There, model parameters were chosen to match the steady shear and extensional properties of each of the dif-
ferent concentrations of polyacrylamide (PAA) solutions with mild strain hardening at L2-levels of 4–6.
Although the essential vortex features of the experimental investigation, in salient-corner and around the
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lip, were predicted in a qualitative sense over the range of contraction ratios and fluid concentrations, they did
not concur at the same flow rates. This lack of quantitative agreement may be explained by appealing to the
three-dimensional aspects involved in the experimental work and the inadequacy of the FENE-P model to
capture all of the essential physics necessary for a complete description of these PAA solutions.

The numerical tools used by Purnode and Crochet [32] were based on a coupled finite element scheme
developed by Marchal and Crochet [22,23]. In their first paper [22], Hermitian elements were introduced
and found to enhance the limit of convergence in De1 over the more conventional Lagrangian elements. In
the Hermitian element approach, a continuous representation for the velocity gradient is considered. In their
subsequent article [23], steady solutions were obtained for a wider range of values of Deborah number, De,
with inconsistent streamline-upwinding (SU) and 4 · 4 linear stress subelements. A lip-vortex appeared at
De = 7.6 when SU was used but disappeared by the time De had increased to 14. The authors speculated that
this observation was a numerical artifact. The size and intensity of the salient corner vortex remained weak
and insensitive to increasing elasticity. It should be noted, however, that the use of SU effectively alters the
constitutive model and is therefore an inconsistent upwinding strategy.

Lip-vortices have also been observed by Yoo and Na [44] using a finite volume scheme based on the stag-
gered grid SIMPLER methodology for an Oldroyd-B model. With an increase in De, the lip-vortex increased
in size and intensity whilst the salient-corner vortex remained largely unchanged. Incorporating inertia had the
effect of reducing the size and strength of the vortices, though lip-vortices still persisted. At low elasticity lev-
els, the lip-vortex was distinct from the salient-corner vortex whilst, at higher elasticity levels, the lip and sali-
ent-corner vortices co-existed within a single recirculation cell.

Carew et al. [12] selected both Oldroyd-B and linear-PTT models (LPTT) for their numerical simulations
with inertia included (Re = 1). For � = 0.02 and the LPTT model, a lip-vortex appeared at We = 5, which
encapsulated the salient corner vortex upon increase of Weissenberg number up to We = 10, becoming the
single established vortex at We = 15. In contrast, in the absence of inertia, no lip-vortex was present at
We = 5. Also, for LPTT (� = 0.25) and We = 10, no evidence of lip-vortex activity was reported. The rheolog-
ical departure here is the considerable reduction in levels of strain-hardening. Both LPTT-versions show no
signs of strain-softening.

Recent work on finite volume discretisations substantiate these finite element findings. Phillips and Wil-
liams [31] reported lip-vortex activity for the flow of an Oldroyd-B fluid through a 4:1 planar contraction
for We > 2. Alves et al. [8] reached identical conclusions for the UCM fluid in the same geometry, as did
Aboubacar and Webster [5] and Xue et al. [43] for an Oldroyd-B fluid with We > 1. Substantial mesh refine-
ment has been undertaken in these studies, yielding an accurate and reliable representation of vortex structure.
Numerical investigations of Phillips and Williams [31] and Aboubacar and Webster [5] on the Oldroyd-B
model with b = 1/9 have shown that a lip-vortex appears in the vicinity of We = 2. On coarser meshes, Abou-
bacar and Webster [5] predicted a lip-vortex for values of the Weissenberg number less than two, yet this fea-
ture disappeared with mesh refinement.

Bishko et al. [9] calculated the transient flow of a highly branched polymer melt in a planar 4:1 contraction
using the differential approximation to the original pom–pom model. The governing equations were discre-
tised using a Lagrangian finite element method. The size of the salient-corner vortex was found to increase
with the degree of branching (q). This was attributed to the increased resistance to extension with branching.
The polymers were largely undeformed within the vortex since the flow was weak in this region. The size of the
vortex also increased with increasing Weissenberg number.

Tanner and Nasseri [34] analysed the response of shear and extensional viscosity of different constitutive
models. There, a new form of single-mode PTT model, named PTT-XPP, was shown to be basically similar
to the XPP model of Verbeeten et al. [36,37] in steady extension. However, this PTT-XPP model was noted to
vary from the XPP model in shear viscosity at larger shear-rates. Clemeur et al. [15] investigated the perfor-
mance of the double convected pom–pom model (DCPP), comparing simulation results for the abrupt con-
1 The Deborah number (De) is defined by De ¼ k1 _cw, where _cw is the fully-developed downstream wall shear rate and k1 is a relaxation
time.



J.P. Aguayo et al. / Journal of Computational Physics 220 (2007) 586–611 589
traction flow with experimental data. They found a deviation of 10–15% between experimental results and
numerical predictions.

More recently, Verbeeten et al. [38] have simulated the transient flow of a low density polyethylene melt in a
planar 3.29:1 contraction using multi-mode XPP models. The basis of the discretisation used is the finite ele-
ment method with a Discrete Elastic-Viscous Split Stress/Discontinous Galerkin (DEVSS/DG) formulation.
Convergence problems were encountered using the original XPP model with the DEVSS/DG method becom-
ing unstable at higher levels of elasticity. However, convergence was achieved using a modified version of the
XPP model in which the stretch dynamics were adjusted to be consistent with other viscoelastic models. This
was in agreement with a modification proposed by Van Meerveld [26] based on non-equilibrium thermody-
namics (see below for discussion). Quantitative comparisons with experimental data on velocity and stress
profiles were presented. Good agreement was achieved except that the experimental stress along the centreline
was underpredicted by this modified XPP model. A steady-state solution for a three-dimensional contraction
geometry has also been reported by Sirakov et al. [33], using a multi-mode pom–pom model, comparing
results against experimental data. They found that numerical predictions on vortex enhancement agreed with
experimental evidence to within 15%. In contrast to the above, the present study is concerned with assessing
the performance of two high-order finite volume schemes, where the novelty lies in extension of these methods
to non-smooth flows (4:1 abrupt planar contraction) and single pom–pom models (SXPP).
2. Governing equations

The governing equations comprise the conservation equations for momentum and mass, together with a
rheological equation of state. Here, we adopt the single equation version of the extended pom–pom (SXPP)
model. This has been shown to be mathematically equivalent to the double equation formulation, involving a
constitutive equation for the orientation tensor and an evolution equation for the stretch.

The governing equations are non-dimensionalised using scales on length (L, die-exit half-width), velocity
(U, die-exit average-velocity), time (L/U), and pressure and extra-stress (lU/L). Here, l = ls + lp is the total
viscosity, with partial polymeric viscosity lp. To preserve similarity between the various constitutive law forms
of the non-dimensional Oldroyd-B and SXPP models, we define lp = G0k0b. Dimensionless group numbers
and parameters Re, We, b and �, are defined by
Re ¼ qUL
l

; We ¼ k0bU
L

; b ¼ ls

ls þ G0k0b
; � ¼ k0s

k0b
:

In this notational form, k0b and k0s represent the orientation and backbone stretch relaxation time-scales,
respectively, and G0 is the linear relaxation modulus. The parameter �, the ratio of stretch to orientation relax-
ation times, is inversely proportional to the entanglement molecular weight of the backbone segments. Values
of � approaching unity correspond to molecules with relatively short backbone lengths, yet displaying long
arms to retard the dynamics. Small values of � correspond to highly entangled backbone configurations.

The equations of motion and continuity are represented viz,
r � u ¼ 0; ð1Þ
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with trace operator I and
k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ We
ð1� bÞ

1

3
jIsj

s
: ð6Þ
Note, in (6) a negative backbone stretch (k) is avoided by taking the absolute value of trace of the extra-stress
(Is), Verbeeten et al. [37]. The parameter m in (5) was incorporated into the model by Blackwell et al. [10] to
remove the discontinuity in the derivative of the extensional viscosity, present in the differential approximation
of the original pom–pom model. Its value is estimated by data-fitting and found to be inversely proportional
to the number of arms (q). More precisely, we have
m ¼ 2

q
:

Finally, the total extra-stress can be written as the sum of polymeric (s) and solvent contributions (2bd).
In particular, the Oldroyd-B model corresponds to setting a = 0 (isotropic) and f(k,s) = 1 in (3). If, in addi-

tion, b = 0, the UCM model is recovered. The constitutive equation (3) incorporates features of the Giesekus
model, since for a 6¼ 0 the model predicts a non-zero second normal stress-difference.

Through the current body of work, we have become of aware of further modifications to the pom–pom
model (see [26,38]). The mathematical nature of these adjustments is to alter the multiplicative factor on
the exponential term of Eq. (5) from (1 � 1/k) to (1 � 1/k2). This has some impact on the extensional rheology
for the material parameters chosen, over the decade of extension rates [1,10]; initially increasing strain-soften-
ing, then reversing this behaviour, before returning to similar softening response for q = 2. Equivalently,
Trouton ratios are lessened. To get some feel for the relative significant of these model modifications, we
can comment that typically at a moderate level of We = 5 (q = 2,Re = 0), stress and backbone stretch can
be reduced in peak corner values by as much as O(10%). One might anticipate in accordance with Verbeeten
et al. [38], that this may lead to enhanced levels of Wecrit steady-state solutions. We note that by introducing
a 6¼ 0 to gain some influence from second normal stress-difference (N2 6¼ 0), we may also introduce the pros-
pect of analytical singularities for some ranges of a-parameter even in homogenous flows [14]. This would
become particularly prevalent at larger values of q. Singularity in the shear viscosity and first normal
stress-coefficient was observed for q = 15 and a = 0.5 in a 4:1 planar rounded-corner contraction (see [6]).
Also, a flattening effect was noticeable in the extensional viscosity. The suggested modification to the model
does not ease this situation in any way. These are issues we have investigated in some detail in [6].

Here, we describe the rheological properties of the extended pom–pom model in planar extensional and
simple shear flow. Fig. 1 illustrates the steady-state shear and extensional viscosities, the Trouton ratio (Tr)
and the backbone stretch. Viscosities are non-dimensionalised with respect to the zero shear-rate viscosity.
By convention, the Trouton ratio is then normalised via a factor of 4. Shear and extensional rates are non-
dimensionalised via the orientation relaxation time, k0b, and the rheological functions are plotted as functions
of k0b _c or k0b _�, as appropriate. The steady-state viscosities of Fig. 1 are derived with the selected parameter
values of � = 1/3, q = 2, a = 0.15 and for b = 1/9.

The dimensionless steady-state shear viscosity of the XPP model exhibits a plateau at low shear-rates up to
a dimensionless shear rate of around 0.2 followed by a shear-thinning regime in the shear-rate range [1,100].
At higher shear-rates, the shear viscosity asymptotes to its second plateau, which approaches the value of b.
The XPP model predicts strain-softening around k0b _� � Oð2Þ, a phenomenon apparently independent of b. At
large dimensionless extension rates (k0b _� > 104) a second plateau regime develops in the extensional viscosity
with limiting value of 4b. The corresponding Trouton ratio shows a peak around deformation rates O(10)
before decaying away at larger values. In addition, the backbone stretch (k) increases significantly and mono-
tonically, when deformation-rates exceed 0.5 units (Fig. 1d). Such increase is present in both shear and exten-
sion, but more prominent in the latter and over the early deformation-rate range up to O(102). With respect to
dependence on alternative parameter specification, the SXPP model can exhibit different levels of extension
hardening that can be enhanced by increasing (q), and to a lesser degree via � (also true for Tr). However, shear
viscosity does not strongly depend on q and �. Additionally, first normal stress coefficient (W1) shows weak
dependence on q and �, barring very high shear rates, when visible increment in (W1) can be observed upon
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increasing q. Solvent/total viscosity ratio (b) affects plateau values in extensional (ge) and shear (gs) viscosity.
When b = 0, there is no second plateau present in ge, gs or Tr. It is on this basis that our present selection of
parameters has been taken, providing suitable material strain-softening properties to study, consistent with
earlier background work.

3. Numerical schemes

Two contrasting finite volume schemes are studied, a hybrid cell-vertex scheme (FE/FV) and a pure cell-
centred (SLFV) scheme. Both finite volume schemes employ a time-splitting construction to evolve the solu-
tion through time towards steady-state. In the case of the hybrid scheme, a semi-implicit formulation is
employed in the momentum equation, based on a fractional-staged Taylor–Galerkin approach, with a pres-
sure-correction step to enforce incompressibility. The pressure-correction (PC) aspects have been improved
more recently to arrive at an incremental-PC implementation with enhanced temporal characteristics [19].
The hybrid cell-vertex scheme is based on a finite element discretisation of the conservation equations of mass
and momentum and a finite volume discretisation of the constitutive equation. The finite volume grid is
formed by partitioning each triangular finite element into four triangular cells by connecting the mid-side
nodes of the element. This provides a stable approximation for viscoelastic flow problems and is close in phi-
losophy to the so-called 4 · 4 stress subelement introduced by Marchal and Crochet [23]. Fluctuation distri-
bution schemes (FD) are used to distribute the flux and source residuals to the vertices of each finite volume
triangular control volume. All FD schemes possess the property that the convected quantity is conserved on
each control volume. In addition, the particular FD scheme used in this paper, the low diffusion B (LDB)
scheme, is linearity preserving. High-order accuracy is achieved through a consistent treatment of the flux
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and source terms in the constitutive equation. The use of a median-dual-cell (MDC) approach for the evalu-
ation of flux and source terms is responsible for improved stability properties, interpreted in terms of maxi-
mum steady-state Weissenberg number solution attained.

The basis of the pure finite volume approach is a backward Euler scheme, with a semi-Lagrangian step to
treat convection terms in both momentum and constitutive equations. This cell-centred finite volume scheme
employs a staggered mesh. The discrete equations are solved using a generalisation of the SIMPLER scheme
extended to include the treatment of the constitutive equation. The semi-Lagrangian component of the algo-
rithm involves particle tracking to determine the location of control volumes at the previous time level, with a
second-order area-weighting technique [30] to perform interpolation of the convected variable at this earlier
time. Area-weighting schemes are inherently conservative when applied to conservation laws and provide
improved stability response thereby. In addition, their use circumvents some of the problems generally asso-
ciated with high-order upwinding schemes, traditionally implemented within the finite volume regime.

Comparison between these two alternative computational formulations has been reported previously in the
literature. Accuracy and stability were investigated in [4] for the Oldroyd-B model, demonstrating spatial and
temporal accuracy with reference to a model steady problem and the transient start-up of plane Poiseuille
flow. The steady aspects of this work were extended more recently to the XPP model in a subsequent publi-
cation [1]. In the present article, we transcend the prediction of simple flows using traditional phenomenolog-
ical models, to present an application of our finite volume schemes to kinetic theory models and the complex
flow of a polymer melt through a 4:1 planar abrupt contraction. In this sense, a comparison is undertaken
between the predictions of the FE/FV and SLFV schemes, focusing on the influence of model parameters
on the velocity, stretch, and stress in the flow as a function of Weissenberg number. Particular emphasis is
given to the growth and decay of salient-corner vortices as a function of Weissenberg number. In addition,
we are able to cast some light upon the influence of inertia within the present context.

3.1. Hybrid finite element/finite volume scheme

The hybrid formulation incorporates fe-constructs for momentum-continuity and fv-cell-vertex stencils for
stress. The underlying finite element structure is a time-splitting semi-implicit approach in which each time-
step combines a three-stage structure. These stages consolidate the combination of two schemes: a Taylor–
Galerkin scheme and an incremental pressure-correction scheme [13]. The diffusion terms in the momentum
equation are treated in an implicit manner, in order to enhance stability. In the hybrid fe/fv context [41],
we appeal to a cell-vertex finite volume (fv) approach to spatially discretise the stress in the constitutive equa-
tion, which appears at discrete Stage 1 of the formulation. The current hybrid implementation, extended to
include the XPP-model, integrates the fv-scheme (for stress) within that of the fe-backbone (for velocity
and pressure). This forms four fv-triangular-subcells per parent fe-triangle, see Fig. 2a.
(a) (b)

Fig. 2. FE/FV spatial discretisation: (a) fe-cell with four fv sub-cells and FD per T, (b) fv-control volume for node l, with median-dual-cell
(MDC-shaded).
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We proceed to summarise the hybrid finite volume methodology utilised here for the pom–pom equations,
identifying flux R = (R)ij = u Æ $s and source Q = (Q)ij as
Fig. 3.
transfo
Q ¼ 1

We
½2ð1� bÞd � f ðk; sÞs� � 1� b

ðWeÞ2
½f ðk; sÞ � 1�I � a

1� b
s � sþ ðruÞy � sþ s � ðruÞ: ð7Þ
In component form, the stress nodal-update is based upon a cell-vertex fluctuation-distribution (FD) proce-
dure (upwinding) on each fv-subcell Ti, combined with a contribution from a median-dual-cell (MDC)
sub-area, see Fig. 2b. The FD-procedure adopts FD-coefficients aT

l , which assign products of flux (RT,
non-conservative form [5]) and source (QT) discrete cell (Ti) residuals to the vertices (l) of each fv-triangle
Ti (XT i , of area XT), according to an upwinding strategy. For this purpose and in the steady-state regime,
we retain the linearity preserving Low-Diffusion B, LDB-scheme, designed to minimise numerical diffusion.
The MDC contribution appends a uniform distribution of Rl

MDCT and Ql
MDCT , to node l within Ti, from its

associated MDC control volume (XT i
l , of area X̂l). In order to ensure consistency through time discretisation

in a stringent manner (see [41]), we examine separately FD and MDC stress nodal updates. Consequently,
these distinct contributions are blended together using solution dependent parameters dT and dT

MDC. After
summation over all fv-subcells Tl surrounding node l, we derive our proposed scheme over a single time-step
Dt for the solution increment Dsnþ1

l , where Dsnþ1
l � ðsnþ1 � snÞl,
X

8T l

XT idT aT
l þ

X
8MDCl

dT
MDCXT i

l

" #
Dsnþ1

l

Dt
¼
X
8T l

dT aT
l bT þ

X
8MDCl

dT
MDCbl

MDCT ; ð8Þ
utilising the cryptic notation bT = (RT + QT) and bl
MDCT ¼ ðRl

MDCT þ Ql
MDCTÞ. Area-sums on the left-hand side

of (8) are reminiscent of the ideas of Hubbard and Roe [21] for pure convection problems. The parameter dT is
defined as: dT = n/3 if |n| 6 3 and 1 otherwise [40]. Here, n = We(a/h), where a represents the magnitude of an
average advection-velocity within each fv-cell T, and h the square-root of the area of that fv-cell. There are two
new important aspects in this nodal-update: first, the consistent distribution of flux and source terms, both
under fluctuation-distribution and MDC; second, the arealess nature of the resultant equation that reflects
consistency in area-weighting. Furthermore, a linked and dynamic MDC weighting parameter of the form
dT

MDC ¼ 1� dT has proved promising. This ensures that the relative strength of flux and source terms is re-
flected, through FD and MDC contributions to the stress nodal update. We may point to further more recent
embellishments upon these formulation ideas under alternative application settings, in the true transient con-
text [42] and in the mildly-compressible regime [19].

3.2. Semi-Lagrangian Finite Volume (SLFV) scheme

The semi-Lagrangian finite volume scheme is a cell-centred finite volume method for discretising the gov-
erning equations in general conservative form. A reference grid is superimposed upon the computational
(a) (b)

SLFV: (a) location of the variables on the finite volume grid, (b) formation of the departure cell C�i;j using the particle-following
rmation to determine the vertices.
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domain and a control volume is associated with each unknown on the grid (Fig. 3), as in [30]. An operator
splitting technique is employed to discretise the governing equations in time. The convection terms in the
momentum and constitutive equations are treated using a semi-Lagrangian technique based on a particle
tracking method, involving the solution of pure convection problems at each time-step to obtain intermediate
values of the velocity (u*) and extra-stress (s*). This is followed by the solution of an unsteady generalised
Stokes problem to determine the pressure and updated velocity
Table
Mesh

Meshe

m1 (F
m2 (F
m3 (F

M1 (S
M2 (S
M3 (S
M4 (S
Re
unþ1 � u�n

Dt

� �
� 2bdnþ1 þrpnþ1 ¼ r � sn; ð9Þ

r � unþ1 ¼ 0; ð10Þ
and the solution of an unsteady problem to update the stress, of pom–pom form,
1
characteristics parameters, FE/FV and SLFV

s Elements/volumes Nodes Degrees of freedom (u,p,s) Rmin

E/FV) 980 2105 13,193 0.0243
E/FV) 1542 3279 20,543 0.019
E/FV) 2987 6220 38,937 0.0063

LFV) 2240 26,880 0.10
LFV) 3200 38,400 0.09
LFV) 3600 43,200 0.08
LFV) 7200 86,400 0.04

Fig. 4. Unstructured FE/FV meshing (m3), in contraction zone.

Fig. 5. Structured SLFV mesh (M4) in contraction zone.
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We
snþ1 � s�n

Dt

� �
þ f ðkn; snÞsnþ1 þ aWe

1� b
sn � sn ¼ 2ð1� bÞdn � ff ðkn; snÞ � 1g 1� b

We
I: ð11Þ
The SIMPLER algorithm [28] is used within the first stage of this process to ensure that a divergence-free
velocity field is obtained.

Convection is treated using the semi-Lagrangian cell-centred method as described by Phillips and Williams
[30]. Particles arriving at the four corner points of a rectangular control volume Ci,j associated with the depen-
dent variable / are retraced to a previous time-step where the departure points define a deformed volume, C�ni;j ,
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-10 -5 0 5 10 15 20
x

0

0.5

1

1.5

2

u
x SLFV

FE/FV

-10 -5 0 5 10 15 20
x

1

1.2

1.4

1.6

1.8

SLFV
FE/FV

-10 -5 0 5 10 15 20
x

0

0.2

0.4

0.6

xx

SLFV
FE/FV

-10 -5 0 5 10 15 20
x

10

15

20

25

P

SLFV
FE/FV

-1 -0.5 0 0.5 1
21

22

23

SLFV
FE/FV

(a) (c)

(b) (d)

Fig. 7. Symmetry line flow results; We = 10, Re = 0.



596 J.P. Aguayo et al. / Journal of Computational Physics 220 (2007) 586–611
formed by joining the departure points with straight line segments (Fig. 3). Within each cell, Ci,j, and at time
tn = nDt, the cell-average approximation to /n

i;j of /(x,y, tn) is evaluated, viz.
/n
i;j �

1

DxiDyj

Z Z
Ci;j

/ðx; y; tnÞ dx dy; ð12Þ
where Dxi ¼ xiþ1
2
� xi�1

2
, Dyj ¼ yjþ1

2
� yj�1

2
: The departure points at time t = tn are determined utilising a particle

tracking transformation. The approximation of cell-average values is performed by means of an area-weight-
ing technique that uses a weighted sum of the values of /n over those control volumes of the reference grid
which overlap with cell C�ni;j . The second-order area-weighting scheme to compute /�ni;j adopts the form
/�ni;j ¼
1

Dxi Dyj

X
|{z}
I;J2Z

xI;J
i;j ð/n

I ;J � an
I;J xI;J � bn

I ;J yI ;JÞ þ
Z Z

C�ni;j\CI ;J

ðan
I;J xþ bn

I ;J yÞ dx dy

" #
; ð13Þ
where xI ;J
i;j is the common area between C�ni;j and CI,J, Z is the set of indices of all points in the computational

domain and ai,j and bi,j are central difference approximations to the fluxes.
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Fig. 8. Profiles along downstream wall, y = 3; We = 10, Re = 0.

Fig. 9. Velocity profile at downstream wall location x = 20, We = 10, Re = 0.
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4. Flow through a 4:1 planar contraction

4.1. Problem specification

The benchmark problem of flow through a 4:1 planar contraction is considered. Fluid passes from one
channel into another of smaller cross-sectional width and in the process generates a complex flow exhibiting
A

E

D
C B

Fig. 10. Sample points used in the 4:1 contraction domain.

(c) We = 20

(a) We = 1

(b) We = 10

(d) We = 1

(e) We = 10

(f) We = 20

Re = 0 Re = 1

Fig. 11. Stream function with increasing We, Re = 0 and 1.
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regions of strong shearing near the walls and planar extension along the centreline (centre plane). The length
of upstream and downstream are 27.5L and 49L, respectively.

To solve the governing system of partial differential equations for the XPP model it is necessary to impose
suitable boundary and initial conditions. However, unlike the situation for UCM/Oldroyd-B models analyt-
ical expressions for fully-developed velocity and extra-stress XPP-profiles are not readily available. Instead,
such profiles must be determined computationally (see [1], for details), by solving the equivalent planar
entry-channel flow problem. Fully developed boundary conditions are established at the outflow ensuring
no change with respect to velocity component Ux and vanishing component Uy. No-slip boundary conditions
are imposed along the stationary walls.

We are able to contrast the alternative numerical solutions obtained with the two FV-schemes described
above, commenting upon predictions for the XPP model within the 4:1 planar contraction flow. A series of
meshes is used for both methods to ensure spatial convergence. Mesh characteristics are provided in Table 1,
detailing numbers of elements (FE/FV) or volumes (SLFV), total numbers of degrees of freedom and smallest
mesh spacing employed. The SLFV scheme invokes a structured rectangular mesh on which the grid point spac-
ing follows a geometric progression as one moves away from the re-entrant corner in the horizontal direction. In
Figs. 4 and 5, we display the finest meshes used with FE/FV and SLFV schemes. The FE/FV mesh (m3) is an
0.1 1 10 100

We

0.1

0.15

0.2
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Fig. 12. Salient-corner vortex cell-size; trends with increasing We, Re = 0 and 1.
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Fig. 13. Salient-corner vortex intensity (·10�3); trends with increasing We, Re = 0 and 1.



Table 5
Mesh convergence: salient-corner vortex intensity (�w · 10�3), 0.1 6We 6 20 and Re = 1

We FE/FV SLFV

m1 m2 m3 M1 M2 M3 M4

0.1 0.410 0.412 0.422 0.441 0.439 0.423 0.422
0.5 0.408 0.428 0.443 0.450 0.448 0.446 0.445
1.0 0.318 0.338 0.389 0.412 0.401 0.399 0.397
3.0 0.201 0.218 0.229 0.271 0.268 0.263 0.262
5.0 0.138 0.140 0.148 0.164 0.162 0.161 0.161

10.0 0.102 0.112 0.119 n/a n/a 0.125 0.124
20.0 0.101 0.103 0.107 n/a n/a 0.112 0.111

Table 2
Mesh convergence: salient-corner vortex cell-size (X), 0.1 6We 6 20 and Re = 0

We FE/FV SLFV

m1 m2 m3 M3 M4

0.1 0.185 0.188 0.188 0.189 0.189
0.5 0.192 0.198 0.198 0.199 0.199
1.0 0.206 0.208 0.208 0.209 0.209
3.0 0.230 0.234 0.235 0.230 0.236
5.0 0.236 0.239 0.239 0.239 0.239

10.0 0.242 0.247 0.247 0.247 0.247
20.0 0.255 0.259 0.259 0.259 0.260

Table 3
Mesh convergence: salient-corner vortex cell-size (X), 0.1 6We 6 20 and Re = 1

We FE/FV SLFV

m1 m2 m3 M1 M2 M3 M4

0.1 0.163 0.160 0.160 0.162 0.161 0.161 0.160
0.5 0.154 0.152 0.152 0.153 0.152 0.152 0.152
1.0 0.153 0.151 0.151 0.153 0.152 0.151 0.151
3.0 0.139 0.137 0.137 0.139 0.139 0.138 0.138
5.0 0.133 0.130 0.130 0.134 0.133 0.131 0.131

10.0 0.122 0.119 0.119 n/a n/a 0.119 0.119
20.0 0.113 0.109 0.109 n/a n/a 0.110 0.110

Table 4
Mesh convergence: salient-corner vortex intensity (�w · 10�3), 0.1 6We 6 20 and Re = 0

We FE/FV SLFV

m1 m2 m3 M3 M4

0.1 1.125 1.126 1.126 1.129 1.129
0.5 1.285 1.286 1.287 1.296 1.298
1.0 1.472 1.472 1.473 1.521 1.523
3.0 2.044 2.045 2.046 2.094 2.098
5.0 1.770 1.771 1.773 1.862 1.864

10.0 1.668 1.669 1.670 1.562 1.563
20.0 1.520 1.521 1.528 1.416 1.418
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unstructured mesh that allows for a finer discretisation around the re-entrant corner, whilst the SLFV mesh
(M4) is a rectangular non-uniform structured mesh. A basis for comparison across schemes and structure
may be established via stress degrees of freedom over comparable control volume zones. In this respect, a single
rectangle in the pure FV scheme forms two triangular subcells of the hybrid scheme.

4.2. Numerical results

Advancing upon our earlier studies [1,4], computations have been performed for one particular set of XPP
parameters, namely: � = 1/3, q = 2, a = 0.15 and b = 1/9. Here, to accommodate for inertial influence, we
have considered two levels of Reynolds number, viz. Re = 0 and 1. Comparable computations across schemes
have been performed for Weissenberg numbers in the range 0 6We 6 20.2 Time-step termination is ensured
when the L2-norm relative maximum difference between solution approximations over two successive time
2 Solutions for FE/FV have been gathered up to We = 60.
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steps falls below a set threshold of O(10�7). Simulations are initiated from a We = 0.1 solution state and con-
tinuation in We parameter space is employed to derive solutions at stages We = 0.5, 1, 3, 5, 10 and 20.

We present in Figs. 6 and 7 creeping flow profiles of horizontal velocity component, stretch, polymeric nor-
mal stress component (sxx) and pressure for We = 0.1 and We = 10, respectively. The contraction is located at
x = 0. A minor overshoot is observed in velocity at We = 10, which is rather weak at We = 0.1. The backbone
stretch and normal stress relax rapidly downstream of the contraction plane when We = 0.1. Relaxation is
much slower when We = 10. Note that, when We = 10, normal stress has not reached its fully-developed level
even at the distant station of x = 20. Generally, there is close agreement observed between results for each
scheme. Only slight variance is detected in k and sxx at We = 10. This is within acceptable error bars due
to differences between the discrete implementations; unstructured versus structured meshing; variable location,
staggered-grid formation versus cell-vertex subcell-FV and quadratic FE-interpolation. The FE/FV scheme
predicts a slightly larger and sharper overshoot than with the SLFV scheme. The peak value of sxx is lower
at the larger value of We = 10 than that for We = 1.0 and 0.1. This is a clear manifestation of strain-softening
that becomes more prominent for We P 5. We present in Fig. 8 profiles along the downstream wall where the
solutions are again in close agreement, noting the slight adjustment around the corner due to the discretisation
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differences referred to above. In Fig. 9, we display the velocity profile at the downstream section x = 20 for
We = 10 and Re = 0. Excellent agreement is obtained between predictions for the two schemes.

Turning to the stream function, contour fields are provided in Fig. 11 for Re = 0 and 1, covering Weiss-
enberg numbers in the range 0 6We 6 20. The dimensionless salient-corner vortex size, X, is defined by
X ¼ Lv=2Lu;
where Lv is the distance along the upstream channel-wall of the separation point from the salient corner, and
Lu is the upstream channel half-width. For creeping flow, X gradually grows with increasing We (see Fig. 12).
This agrees with the findings of Bishko et al. [9] in computations with the differential approximation to the
original pom–pom model. Simultaneously, the intensity of the vortex increases up to We = 3, thereafter,
decreasing monotonically (see Fig. 13). This behaviour may be explained in terms of the initial moderate
strain-hardening of the XPP model, followed by some strain-softening. Here, we relate this response to that
of the exponential PTT model with e = 0.25 (see [2,3]). In contrast, one notes that the Oldroyd-B model (or
PTT with e = 0.02) displays extreme strain-hardening, even at moderate extension rates (spurning lip-vortices
and subsequently reducing critical We). Sustained salient-corner vortex growth is consistent with decreasing
0

0

-0.05

0

0.05

0.1

0.2

0.3

0.4

0.6
0.7 1

0.7
0.6

0.40.3
0.20.1

0.2

-0.1
(a) We = 1

0.05

0

0

0.05

0.1

0.2

0.3
0.4

0.1

0.05

0.1

(b) We = 10

0

0

0.05
0.1

0.2
0.3

0.1
0.05

0

(c) We = 20

0.1

0.05

0

0

0.2

0.3

0.4
0.6

0.8 1

0.1
0

0.7
0.6

0.4
0.30.20.1

-0.05

-0.1
(d) We = 1

0.1

0.05

0

0

0.05
0.1

0.1

0.05

0.2

0.3

0.4

0.6

-0.05
(e) We = 10

0.05 0
0

0.1

0.2

0.3
0.4

0.05

0.05

(f) We = 20

Re = 0 Re = 1

Fig. 16. Shear stress (sxy) fields: increasing We, Re = 0 and 1.



0

0.01

-0.2

-0.5

-1

1

0.5

1

1.5

0.5 0.3
0.4

0.4
0.3

0.1
0.01

0

0.7

(a) We = 1
0.

3 0.
4

0.
5 0.5

0.4

-0.2

0

0.01

0.1

0.01

0

0.7

0.7

(b) We = 10

0.1

0.01

0

0

0.01

0.50.3 0.4 0.4

0.4
0.5

0.3

-0.2

(c) We = 20

0

0.01

0

0.01

0

-0.2

-0.5

0.1

0.3

0.4 0.5
0.7

0.
7

1 0.7

0.5

(e) We = 10

0.01

0

-0.2

0.1

0.3
0.4 0.5

0.7

0.4

0.4

0

(f) We = 20

Re = 0 Re = 1

-0.2

-0.5

-1

10.70.5

0.4

0.3 1.5

1 0.7
0.5

0.4 0.3

1.5
2

2.5
0.1

0.01
0

0

(d) We = 1

Fig. 17. First normal stress difference (N1) fields: increasing We, Re = 0 and 1.

J.P. Aguayo et al. / Journal of Computational Physics 220 (2007) 586–611 603
Trouton ratios as We increases. Again, predictions for salient-corner vortex cell-size and intensity, generated
with the two independent finite volume schemes for the XPP model, are found to be in excellent agreement.
Under such moderate strain-hardening, no lip-vortex activity is detected, as consistent with LPTT (e = 0.25) of
Carew et al. [12] and pom–pom results of Bishko et al. [9].

With the introduction of inertia, we can discern vortex reduction with increasing Weissenberg number. This
lies in dramatic contrast to the situation for creeping flow (see Fig. 12), where the vortex grows steadily in size
with increasing Weissenberg number. So, for Re = 1, increasing elasticity suppresses the salient-corner vortex.
Initially, the intensity of the salient-corner vortex slightly increases up to We = 0.5, before decreasing mono-
tonically (see Fig. 13). For a direct comparison at We = 20, the intensity of the salient-corner vortex is approx-
imately 10% of its value for the corresponding creeping flow situation.

Quantitative information regarding mesh convergence of the salient-corner vortex cell-size and intensity3 is
provided in Tables 2–5 for Re = 0 and 1, respectively, covering the range 0.1 6We 6 20. The information in
these tables demonstrates that convergence with mesh refinement has been achieved for the range of param-
3 Salient-corner vortex intensity is reported on maximum stream function values scaled by 10�3.
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eters considered. An interesting feature of computation with the pom–pom model is that, for larger values of
Weissenberg number, the computational mesh must be sufficiently fine in order to sustain a suitably converged
solution. This goes hand-in-hand with model expectations, as for large Weissenberg number, the pom–pom
stress becomes Newtonian once more with the solvent contribution dominating (see Fig. 1).

Bishko et al. [9] have shown that the inflow section can be divided into three regions, two zones of relatively
unstretched material, one near the centreline and one in the recirculating vortex. The third banded region is
one of highly-stretched material. This feature can be observed for creeping flow in Fig. 14 for We = 1, 10, and
20.4 Regions of larger stretch develop around the re-entrant corner and along the downstream wall as the
Weissenberg number increases. The banded region of more stretched material corresponds to the deforma-
tion-rates in which extensional effects dominate over shear effects (see Fig. 1d). Note that, when We = 20,
stretch near the re-entrant corner locally exceeds a level of two, which is greater than the number of
branched-arms, q. In the original pom–pom model this would not have been possible due to its inherent con-
4 All field contour plots are practically identical for both schemes, Figs. 13–20; the choice here is to display those for FE/FV scheme.
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straint that stretch could not exceed the number of arms. In the present circumstance, this constraint has been
removed within the XPP model.

The associated developing polymeric stress field structure may be gathered through the normal component
(sxx) of Fig. 15 and the shear component (sxy) of Fig. 16. In contrast to the stretch, which still increases with
increasing Weissenberg number, the normal stress component sxx relaxes at higher values of We, particularly
around the re-entrant corner. This feature of the XPP model was also observed in start-up planar channel
Poiseuille flow [35]. In Fig. 16, we observe a general decrease in the magnitude of sxy with increasing We in
the banded zone, where extensional flow dominates that of shear.

The behaviour of the first normal stress difference, N1, shown in Fig. 17, follows that in sxx, and is in keep-
ing with the extensional rheology plots. N1 reduces in magnitude as We increases across the domain around
the re-entrant corner zone in particular. This is a consequence of strain-softening (see below). The second nor-
mal stress difference, N2, is non-zero in these complex flows with this XPP model (a 6¼ 0). N2-fields convey the
curvature structure and growth of the evolving salient-corner vortex as We increases, noting the difference
between inertial settings (Re = 0 and 1) (see Fig. 18). The dxx and dxy components of the rate-of-deformation
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Fig. 19. Rate-of-strain (dxx) fields: increasing We, Re = 0 and 1.
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tensor are shown in Figs. 19 and 20, respectively. The component dxx is largely unaffected by increase in We.
Conspicuously, regions of largest stretch (k) in the entry zone correspond to similar zones in extension-rate,
dxx. Similarly, dxy is also unaffected with increase in We, with the exception of along the downstream wall
where a boundary layer in stress develops. In addition, Fig. 21 presents principle stress difference field patterns

(sPSD ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4s2

xy þ N 2
1

q
). Here, in accordance with the finding of Verbeeten et al. [38], we observe similar ‘‘butter-

fly’’ shaped fringes and the recirculation zone upstream of the contraction. A quantitative summary of the
values of stretch (k) and first normal stress difference (N1) is provided in Table 6. These data cover the field
plots and apply for both FE/FV and SLFV schemes at the various sample points indicated, A–E of
Fig. 10. The agreement through schemes and We-setting is uniform across the point sampling, being of
O(1%) in each variable within the maximum norm, in relative difference between the scheme solutions per
variable5.
5 Definition:
kx1�x2k1
kXk1

variable xi, scheme i = 1,2.
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Fig. 21. Fringe pattern fields: increasing We, Re = 0 and 1.

Table 6
Values of stretch (k) and first normal stress difference (N1) at sample points, 0.1 6We 6 20, Re = 0 (contraction point at x = 0.0, y = 3.0)

Sample-points We FE/FV SLFV

1 10 20 1 10 20

A k 1.01 1.16 1.35 1.01 1.18 1.35
(x = 19.9, y = 3.78) N1 0.13 0.22 0.20 0.14 0.23 0.20

B k 1.05 1.50 1.72 1.06 1.55 1.71
(x = 19.9, y = 3.50) N1 0.76 0.53 0.37 0.81 0.58 0.37

C k 1.05 1.49 1.65 1.06 1.55 1.71
(x = 9.99, y = 3.50) N1 0.76 0.52 0.34 0.81 0.57 0.37

D k 1.01 1.26 1.45 1.01 1.36 1.55
(x = �1.94, y = 3.07) N1 0.24 0.21 0.18 0.25 0.27 0.21

E k 1.01 1.23 1.41 1.01 1.26 1.39
(x = �2.00, y = 2.07) N1 �0.23 0.044 0.015 �0.19 0.026 0.049
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Finally, Fig. 22 charts total pressure-drop across the domain and its variation with increasing fluid elastic-
ity, for Re = 0 and 1. Clearly, both methods predict that pressure-drop is a decreasing function of Weissenberg
number below the Newtonian value. This level of inertia is barely significant. In fact, this decline is initially
most rapid, falling by some 83% from the Newtonian level to We = 1. Then, in proceeding from We = 1 to
We = 5, the pressure drop decreases further by more than 50%. Thereafter, the decline in pressure-drop is
more gentle. This can be interpreted through the shear-thinning response of the model, spanning deformation
rates between unity and O(10) and noting the moderating influence of increasing We. Again, excellent agree-
ment is observed between results generated with the SLFV and FE/FV schemes. In numerical studies, it is also
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common practice to report pressure-drop via the Couette correction (C). This non-dimensional quantity
accounts both for the pressure-correction due to the straight channel and the shear properties of the fluid.
As such and following Aboubacar et al. [2], we provide in Fig. 23 Couette correction versus We for the creep-
ing flow regime. Here, Couette correction increases monotonically, being due to the shear-thinning properties
of the fluid, consistent with the observation of Aboubacar et al. [2] for an EPTT(� = 0.25) model. We note
that, both SXPP and EPTT(� = 0.25) models share similar type of rheological properties both in shear and
extension.

5. Conclusions

In this paper, we have contrasted two finite volume schemes and their associated solutions computed over a
range of Weissenberg numbers for the XPP model, representing linear-backbone branched polymer melts.
Emphasis has been placed upon obtaining viscoelastic solutions in planar, sharp corner contraction geome-
tries. For the hybrid FE/FV scheme, stability and high Weissenberg number solutions have been achieved with
a combination of subgrid interpolation for stress, and a consistent treatment of flux and source terms in the
momentum equation. This has drawn upon fluctuation distribution and median-dual-cell constructs. Likewise,
stability for the pure finite volume schemes (SLFV) has been gathered via a semi-Lagrangian treatment on
convection terms, and particularly those within the constitutive equation. Here, second-order area-weighting
has been used to evaluate contributions from the previous time-step. Distinction may be drawn between the
schemes through their discrete implementation, variable location, control-volume stencils and meshing
strategy.

Notwithstanding such differences, excellent agreement has been obtained between these two independent
finite volume schemes in the prediction of flow through a 4:1 planar contraction. Quantitative mesh converged
data on the size and intensity of the salient-corner vortex have been presented and a detailed mesh conver-
gence study has been performed. Under creeping flow conditions, the cell-size of the vortex has been found
to increase with increasing Weissenberg number. Correspondingly, the intensity of the vortex initially has
increased with increasing We, before decreasing as the Weissenberg number is increased still further. The pres-
ence of inertia has the opposite effect on vortex cell-size, generating decrease with increasing Weissenberg
number. Initially, vortex intensity in this case has grown moderately, prior to assuming a steady decline.
The XPP model has produced similar trends in vortex behaviour to that for the exponential PTT (e = 0.25)
model. We note, both models share the same type of steady rheological behaviour, being shear-thinning
and extension hardening/softening. The dominant feature of larger shear and extension in the entry zone influ-
ences stress and stretch, in keeping with the associated rheological properties of the XPP model. Larger stretch
develops around the re-entrant corner zone as Weissenberg number increases, whilst correspondingly stress
levels decline.
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